Skip to content

Building a ChatGPT Clone with Streamlit and LangChain: A Comprehensive Guide for AI Enthusiasts

In the rapidly evolving world of artificial intelligence and natural language processing, creating sophisticated chatbot applications has become more accessible than ever. This comprehensive guide will walk you through the process of building a ChatGPT clone using Streamlit and LangChain, two powerful Python libraries that simplify the creation of AI-powered web applications.

Introduction: The Rise of Conversational AI

Conversational AI has seen exponential growth in recent years. According to a report by Grand View Research, the global conversational AI market size is expected to reach $32.62 billion by 2030, growing at a CAGR of 20.0% from 2023 to 2030. This surge in interest and investment underscores the importance of understanding and implementing chatbot technologies.

Our project aims to create a web-based chatbot interface that emulates some of the core functionality of ChatGPT. We'll be leveraging OpenAI's GPT-3.5 Turbo model, Streamlit for the web interface, and LangChain for managing conversation flow and model interactions.

Key Learning Objectives

By following this guide, you'll gain practical experience in:

  • Developing interactive AI applications
  • Working with state-of-the-art large language models (LLMs)
  • Creating responsive web interfaces for AI models
  • Managing conversation state and memory in chatbots
  • Implementing advanced features like streaming responses and context management

Technical Stack and Prerequisites

Before we dive into the implementation, let's review the key components and requirements:

Core Technologies:

  • Python 3.7+: Our primary programming language
  • Streamlit: A powerful library for creating web apps with minimal effort
  • LangChain: A framework for developing applications powered by language models
  • OpenAI API: We'll be using the GPT-3.5 Turbo model via OpenAI's API

Prerequisites:

  • An OpenAI API key
  • Basic to intermediate knowledge of Python
  • Familiarity with command-line interfaces
  • Understanding of web technologies (HTML, CSS, JavaScript) is beneficial but not required

Setting Up the Development Environment

1. Create a Project Directory

First, let's create a new directory for our project:

mkdir chatgpt_clone
cd chatgpt_clone

2. Set Up a Virtual Environment

It's a best practice to use a virtual environment for Python projects. Create and activate one using:

python3 -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`

3. Install Required Libraries

Install the necessary Python packages:

pip install streamlit langchain openai python-decouple

4. Create Project Files

Create two main files in your project directory:

  • app.py: This will contain our main application code.
  • .env: This will store our OpenAI API key securely.

Add your OpenAI API key to the .env file:

OPENAI_API_KEY=your_api_key_here

Building the ChatGPT Clone: A Step-by-Step Guide

Now, let's break down the process of building our ChatGPT clone into manageable steps.

Step 1: Import Required Libraries

Open app.py and start by importing the necessary libraries:

import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from decouple import config
from langchain.memory import ConversationBufferWindowMemory

Step 2: Configure Streamlit Page

Set up the Streamlit page configuration:

st.set_page_config(
    page_title="ChatGPT Clone",
    page_icon="🤖",
    layout="wide"
)
st.title("ChatGPT Clone")

Step 3: Initialize Session State

Initialize the session state to store conversation history:

if "messages" not in st.session_state:
    st.session_state.messages = [
        {"role": "assistant", "content": "Hello! How can I assist you today?"}
    ]

Step 4: Display Conversation History

Display all previous messages in the conversation:

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

Step 5: Create User Input Field

Add an input field for user messages:

user_input = st.chat_input("Type your message here...")

Step 6: Set Up LangChain Components

Configure the LangChain components, including the prompt template, language model, and conversation memory:

prompt = PromptTemplate(
    input_variables=["chat_history", "human_input"],
    template="""
    You are a helpful AI assistant. Respond to the human's input based on the chat history.

    Chat History: {chat_history}
    Human: {human_input}
    AI Assistant:
    """
)

llm = ChatOpenAI(temperature=0.7, openai_api_key=config("OPENAI_API_KEY"))
memory = ConversationBufferWindowMemory(memory_key="chat_history", k=5)

conversation_chain = LLMChain(
    llm=llm,
    memory=memory,
    prompt=prompt,
    verbose=True
)

Step 7: Process User Input and Generate Response

When the user submits a message, process it and generate a response:

if user_input:
    st.session_state.messages.append({"role": "user", "content": user_input})
    with st.chat_message("user"):
        st.write(user_input)

    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = conversation_chain.predict(human_input=user_input)
            st.write(response)
    
    st.session_state.messages.append({"role": "assistant", "content": response})

Advanced Features and Optimizations

To elevate our ChatGPT clone from a basic implementation to a more sophisticated application, we can implement several advanced features:

1. Streaming Responses

Instead of waiting for the entire response to be generated, we can stream it in real-time, providing a more engaging user experience:

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

def stream_handler(token):
    response_container.markdown(token)

streaming_handler = StreamingStdOutCallbackHandler(stream_handler)

llm = ChatOpenAI(
    temperature=0.7,
    openai_api_key=config("OPENAI_API_KEY"),
    streaming=True,
    callbacks=[streaming_handler]
)

2. Implementing Context Management

To maintain context across multiple turns of conversation, we can use LangChain's advanced memory components:

from langchain.memory import ConversationSummaryBufferMemory

memory = ConversationSummaryBufferMemory(
    llm=llm,
    max_token_limit=2000,
    memory_key="chat_history",
    return_messages=True
)

This approach allows for longer conversations while managing token limits effectively.

3. Adding System Prompts

We can include system prompts to give the AI assistant specific instructions or personality traits:

system_prompt = """
You are a friendly and knowledgeable AI assistant. Your responses should be:
1. Accurate and informative
2. Concise yet comprehensive
3. Engaging and conversational in tone
4. Respectful and ethical
"""

prompt = PromptTemplate(
    input_variables=["system_prompt", "chat_history", "human_input"],
    template="""
    {system_prompt}

    Chat History: {chat_history}
    Human: {human_input}
    AI Assistant:
    """
)

4. Implementing Error Handling

To make our application more robust, we should implement proper error handling:

try:
    response = conversation_chain.predict(human_input=user_input)
except Exception as e:
    st.error(f"An error occurred: {str(e)}")
    response = "I apologize, but I encountered an error. Could you please try rephrasing your question?"

Performance Considerations and Scalability

As we develop our ChatGPT clone, it's crucial to consider performance and scalability to ensure a smooth user experience and efficient resource utilization:

1. Caching

Utilize Streamlit's built-in caching mechanism to store and reuse expensive computations:

@st.cache_data
def get_response(input):
    return conversation_chain.predict(human_input=input)

2. API Rate Limiting

Implement rate limiting to avoid exceeding OpenAI's API quotas:

import time

def rate_limited_response(input):
    if time.time() - rate_limited_response.last_call < 1:  # 1 second delay
        time.sleep(1)
    rate_limited_response.last_call = time.time()
    return get_response(input)

rate_limited_response.last_call = 0

3. Asynchronous Processing

For handling multiple users, consider implementing asynchronous processing:

import asyncio
from langchain.llms import OpenAI

async def async_generate(prompt):
    llm = OpenAI()
    return await llm.agenerate([prompt])

responses = await asyncio.gather(async_generate(prompt1), async_generate(prompt2))

4. Database Integration

For long-term storage of conversation histories, integrate a database solution:

import sqlite3

conn = sqlite3.connect('conversations.db')
c = conn.cursor()

# Create table
c.execute('''CREATE TABLE IF NOT EXISTS conversations
             (id INTEGER PRIMARY KEY, user_id TEXT, timestamp TEXT, message TEXT)''')

# Insert a row of data
c.execute("INSERT INTO conversations VALUES (NULL,?,?,?)", (user_id, timestamp, message))

# Save (commit) the changes
conn.commit()

# Close the connection
conn.close()

Security and Privacy Considerations

When working with AI models and user data, security and privacy are paramount. Here are some key considerations:

1. API Key Management

Never expose your OpenAI API key in the client-side code. Use environment variables or secure key management systems.

2. Data Encryption

Encrypt sensitive data both in transit and at rest:

from cryptography.fernet import Fernet

key = Fernet.generate_key()
f = Fernet(key)
encrypted_data = f.encrypt(b"sensitive data")
decrypted_data = f.decrypt(encrypted_data)

3. User Authentication

Implement user authentication for personalized experiences:

import streamlit_authenticator as stauth

names = ["John Smith", "Rebecca Briggs"]
usernames = ["jsmith", "rbriggs"]
passwords = ["123", "456"]

hashed_passwords = stauth.Hasher(passwords).generate()

authenticator = stauth.Authenticate(names, usernames, hashed_passwords,
    "some_cookie_name", "some_key", cookie_expiry_days=30)

name, authentication_status, username = authenticator.login("Login", "main")

if authentication_status:
    st.write(f'Welcome *{name}*')
    # Main Streamlit app goes here
elif authentication_status == False:
    st.error('Username/password is incorrect')
elif authentication_status == None:
    st.warning('Please enter your username and password')

4. Data Retention Policies

Establish clear policies on how long user data is stored and how it's used. Implement automatic data deletion after a specified period:

import datetime

def delete_old_data():
    current_time = datetime.datetime.now()
    threshold = current_time - datetime.timedelta(days=30)  # 30 days retention
    
    c.execute("DELETE FROM conversations WHERE timestamp < ?", (threshold,))
    conn.commit()

Future Directions and Research

As the field of conversational AI rapidly evolves, several exciting research directions emerge:

1. Multi-modal Interactions

Incorporating image and audio processing capabilities can greatly enhance the user experience:

from PIL import Image
import torch
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer

model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

def caption_image(image_path):
    image = Image.open(image_path)
    pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values
    
    output_ids = model.generate(pixel_values, max_length=16, num_beams=4)
    preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
    return preds[0]

2. Fine-tuning for Specific Domains

Adapting the model for specialized knowledge areas can significantly improve performance in domain-specific tasks:

from transformers import GPT2LMHeadModel, GPT2Tokenizer, TextDataset, DataCollatorForLanguageModeling
from transformers import Trainer, TrainingArguments

model = GPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

train_dataset = TextDataset(
    tokenizer=tokenizer,
    file_path="train.txt",
    block_size=128)

data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer, mlm=False)

training_args = TrainingArguments(
    output_dir="./gpt2-fine-tuned",
    overwrite_output_dir=True,
    num_train_epochs=1,
    per_device_train_batch_size=4,
    save_steps=10_000,
    save_total_limit=2,
)

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=train_dataset,
)

trainer.train()

3. Ethical AI Enhancements

Implementing more robust ethical guidelines and bias detection is crucial for responsible AI development:

from detoxify import Detoxify

model = Detoxify('original')

def check_toxicity(text):
    results = model.predict(text)
    return results

4. Improved Context Understanding

Developing better methods for long-term context retention can lead to more coherent and contextually appropriate responses:

from langchain.memory import ConversationEntityMemory
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
memory = ConversationEntityMemory(llm=llm)

5. Federated Learning

Exploring privacy-preserving techniques for model improvement:

import tensorflow as tf
import tensorflow_federated as tff

def create_keras_model():
    return tf.keras.models.Sequential([
        tf.keras.layers.InputLayer(input_shape=(784,)),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax)
    ])

def model_fn():
    keras_model = create_keras_model()
    return tff.learning.from_keras_model(
        keras_model,
        input_spec=train_data[0].element_spec,
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]
    )

iterative_process = tff.learning.build_federated_averaging_process(
    model_fn,
    client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
    server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0)
)

Conclusion: The Future of Conversational AI

Building a ChatGPT clone with Streamlit and LangChain provides valuable insights into the world of conversational AI